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Murine Lung Responses to Ambient Particulate Matter: Genomic Analysis
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BACKGROUND: Asthma is a complex disease characterized by airway hyperresponsiveness (AHR)
and chronic airway inflammation. Epidemiologic studies have demonstrated that exposures to envi-
ronmental factors such as ambient particulate matter (PM), a major air pollutant, contribute to
increased asthma prevalence and exacerbations.

OBJECTIVE: We investigated pathophysiologic responses to Baltimore, Maryland, ambient PM
(median diameter, 1.78 pm) in a murine model of asthma and attempted to identify PM-specific
genomic/molecular signatures.

METHODS: We exposed ovalbumin (OVA)-sensitized A/] mice intratracheally to PM (20 mg/kg),
and assayed both AHR and bronchoalveolar lavage (BAL) on days 1, 4, and 7 after PM exposure.
Lung gene expression profiling was analyzed in OVA- and PM-challenged mice.

RESULTS: Consistent with this murine model of asthma, we observed significant increases in airway
responsiveness in OVA-treated mice, with PM exposure inducing significant changes in AHR in
both naive mice and OVA-induced asthmatic mice. PM evoked eosinophil and neutrophil infiltra-
tion into airways, elevated BAL protein content, and stimulated secretion of type 1 T helper (Ty1)
cytokines [interferon-y, interleukin-6 (IL-6), tumor necrosis factor-o] and Ty2 cytokines (IL-4,
IL-5, eotaxin) into murine airways. Furthermore, PM consistently induced expression of genes
involved in innate immune responses, chemotaxis, and complement system pathways.
CoNCLUSION: This study is consistent with emerging epidemiologic evidence and indicates that
PM exposure evokes proinflammatory and allergic molecular signatures that may directly con-
tribute to the asthma susceptibility in naive subjects and increased severity in affected asthmatics.
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Extensive epidemiologic research confirms the
association between increasing cardio-
pulmonary morbidity and mortality and
short-term exposure to ambient particulate air
pollution (Dominici et al. 2003; Samet and
Krewski 2007). Although the relative risk esti-
mates are small, public health concerns exist
because of the large population under expo-
sure and the existence of high-risk groups,
such as the elderly, diabetics, and those with
cardiopulmonary diseases (Johnson and
Graham 2005). Increase in particulate air pol-
lution levels are associated with increased hos-
pital admissions and emergency department
visits for respiratory diseases, such as asthma
and chronic obstructive pulmonary disease
(COPD) (Brunekreef and Forsberg 2005).
Unfortunately, despite significant epidemio-
logic evidence, experimental studies of animals
and human exposure to inhaled concentrated
ambient particulate matter (PM) have yet to
provide substantial insights into specific
mechanisms of the pathophysiologic conse-
quences of exposure to ambient PM (Handzel
2000; Peden 2001).

Preclinical animal models have been used
to examine the relationship between exposure
to PM and airway pathogenesis and elevated
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airway hyperresponsiveness (AHR) (Archer
et al. 2004; de Haar et al. 2006; Walters et al.
2001) both in naive animals and in animals
sensitized by antigen challenge (Fernvik et al.
2002; Steerenberg et al. 2003). However, it
remains unclear as to which mechanisms are
involved in producing local airway damage
and adjuvant activity to antigen challenge. To
address potential mechanisms of PM-medi-
ated AHR in both control and at-risk popula-
tions, we employed a murine model of AHR
and asthma induced by sensitization to oval-
bumin (OVA). We exposed naive and OVA-
sensitized mice to Baltimore, Maryland,
ambient PM, a challenge we previously
demonstrated to produce acute airway toxicity
(Walters et al. 2001). In addition, we applied
genomic strategies to characterize acute PM
pulmonary effects in OVA-challenged mice in
order to define molecular signatures produced
by PM, an approach successfully employed in
other inflammatory lung disorders (Girgis
et al. 2005; Grigoryev et al. 2004; Ma et al.
2005; Nonas et al. 2007; Simon et al. 20006).
We now report that acute ambient PM
exposure induces significant changes in AHR,
accompanied by eosinophil/neutrophil
infiltration and type 1 T helper (Ty1)/Ty2

cytokine secretion in both naive mice and
OVA-induced asthmatic mice. These studies
indicate that the pathophysiologic effects of
PM, validated in an OVA-challenged murine
model of asthma, may directly contribute to
the asthma susceptibility in naive subjects and
increased severity in affected asthmatics.

Materials and Methods

Baltimore PM generation. The collection and
characterization of ambient Baltimore PM
used in these studies have been previously
described (Walters et al. 2001, 2002). Briefly,
PM was collected from a sixth floor window
in urban Baltimore using a high-volume
cyclone collector (theoretical cut point of
0.85 pm aerodynamic diameter) intermit-
tently operated over a period of months with
a flow rate of 0.6 m3/min. Collected PM was
pooled and refrigerated until use. The count
median diameter of PM was 1.78 pm with a
geometric standard deviation of 2.21.

Murine model of asthma. Male A/] mice
(8-12 weeks of age; Jackson Laboratories, Bar
Harbor, ME) were housed in an environmen-
tally controlled animal facility at the University
of Chicago for the duration of the experi-
ments. All animal procedures conformed to
the principles for laboratory animal research
outlined by the Animal Welfare Act (1966)
and the National Institutes of Health guide-
lines for the experimental use of animals
(Institute of Laboratory Animal Resources
1996), as well as the common guideline of the
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University of Chicago Animal Care and Use
Committee. All procedures were designed to
treat the animals humanely and with regard for
the alleviation of suffering.

Experimental asthma was induced in 8- to
12-week-old A/] mice by OVA sensitization
[0.4 mg/kg, intraperitoneally (ip); day —17) and
an intratracheal OVA challenge (30 mg/kg, day
—3) as previously described (Ewart et al. 2000).
PM was delivered 3 days post-OVA challenge
(day 0) via intratracheal instillation, as previ-
ously described (Walters et al. 2001, 2002) into
anesthetized mice (45 mg/kg ketamine and
8 mg/kg xylazine) suspended on a 60° incline
board. With the tongue gently extended, a
50-pL aliquot of PM suspended in phosphate-
buffered saline (PBS; 20 mg/kg), was placed in
the back of the oral cavity and aspirated by the
animal. We designed four experimental groups:
PBS/PBS (all OVA and PM treatments
replaced with PBS), PBS/PM (OVA treatments
replaced with PBS), OVA/PBS (PM treatment
replaced with PBS), and OVA/PM (received
both OVA and PM treatments). AHR was
determined after PM exposure of 1, 4, or 7 days
and animals were sacrificed for bronchoalveolar
lavage (BAL) extraction and tissue harvesting.

Airway responsiveness measurements. We
assessed airway responsiveness to intravenously
administered acetylcholine (ACh) as previously
described (Moreno et al. 2003). Mice were
anesthetized by ip ketamine (150 mg/kg) and
acetylpromazine (15 mg/kg). Once surgical
anesthesia was established, a tracheotomy was
performed and a 19-gauge stainless steel can-
nula was inserted into the trachea. Animals
were then paralyzed with pancuronium bro-
mide (4 mg/kg, ip) and placed on a 37°C heat-
ing pad, where the cannula was connected to a
computer-controlled ventilator. Ventilation
was maintained at a rate of 120 breaths/min
and a tidal volume of 9 mL/kg, with the heart
rate monitored (PowerLab System, AD
Instruments, Colorado Springs, CO) to ensure
proper anesthetic depth. ACh (1-10 mg/kg)
was injected into the inferior vena cava, and
changes in airway pressure were recorded for
5 min, followed by calculation of the relative
airway pressure time index (APTI)—the per-
centage increase of APTI within 5 min—to
quantify airway responsiveness induced by ACh
in various animal groups (Ewart et al. 1996;
Grinnan et al. 2006; Wills-Karp et al. 1998).

Bronchoalveolar lavage. We performed
BAL by flushing the lungs with 1 mL cold
Hanks balanced salt solution (HBSS;
Invitrogen, Grand Island, NY) through the tra-
cheal cannula, as previously described (Walters
et al. 2002). The recovered lavage fluid
(- 0.7 mL) was centrifuged (500 x g for
20 min), and the cell pellet was resuspended in
200 pL ice-cold HBSS. Total cells were
counted with a hemocytometer. Slides were
prepared by cytocentrifugation (Cytospin 3;
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Shandon Instruments, Pittsburgh, PA) and
stained with Diff-Quik (Dade Behring,
Diidingen, Switzerland). We determined BAL
cell differential counts using morphologic crite-
ria under a light microscope with evaluation of
200 cells/slide. The supernatant from BAL fluid
was centrifuged again (15,000 x g for 10 min),
and the supernatant was stored at —80°C for
further protein and cytokine analysis.

Measurements of BAL proteins and
cytokines. We measured protein concentra-
tions in BAL fluid using the RC DC Protein
Assay (Bio-Rad, Hercules, CA) according to
the manufacturer’s recommendations. We
converted optical density readings of samples
to milligrams per milliliter using values
obtained from a standard curve generated with
serial dilutions of bovine serum albumin
(0.1-1.5 mg/mlL). Interleukin-4 (IL-4), IL-5,
eotaxin, interferon-y (IFN-y), and tumor
necrosis factor-o. (TNF-0.) were measured in
unconcentrated BAL fluid using the BioPlex
system as described by de Jager et al. (2003).
Optical density readings of samples were con-
verted to relative levels using values obtained
from standard curves generated with serial
dilutions of each recombinant cytokine.

Lung histopathology. Murine lungs were
excised and immersed in 10% formalin for at
least 48 hr. The left lobe was removed and
washed with 70% ethanol, dehydrated, and
embedded in glycol methacrylate. Sections, cut
5—-6 pm thick, were stained with hematoxylin
and eosin (H&E); we examined two sections
from each sample for evidence of inflammation,
injury, and number of mucus-containing cells
using Periodic Acid-Schiff (PAS) staining kit
(Sigma Chemical Co., St. Louis, MO).

RNA isolation and transcript analysis. We
extracted total RNA from frozen lungs with a
combined protocol using TRIzol reagent
(Invitrogen, Carlsbad, CA) and the RNeasy kit
(Qiagen, Valencia, CA) as previously described
(Nonas et al. 2007; Simon et al. 2006). Frozen
lungs were mixed with TRIzol reagent and
homogenized with a Polyclone tissue homoge-
nizer (Kinematica, Bohemia, NY). We used an
RNeasy kit to further clean the total RNA
extracted by TRIzol reagent. We routinely
performed an on-column DNase I digestion.
For each group, we prepared RNA from the
lungs of three animals.

We used total RNA (5 pg) to synthesize
double-stranded cDNA using the One-Cycle
cDNA Synthesis Kit (Affymetrix, Santa Clara,
CA). The cDNA served as a template to syn-
thesize biotin-labeled antisense cRNA using
an IVT Labeling Kit (Affymetrix). Labeled
cRNA was fragmented and hybridized to the
Affymetrix Mouse Genome 430 2.0 Array
(containing ~ 34,000 genes), as described in
the Affymetrix GeneChip protocol. Chips
were scanned using a GeneChip Scanner 3000

(Affymetrix).
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Oligonucleotide array analysis. We evalu-
ated chip quality, including RNA degradation,
reverse transcription, cRNA synthesis and label-
ing, hybridization, chip washing, and scanning,
uing GCOS, dChip (Li and Hung Wong
2001), and the Bioconductor Affy package
(Bolstad et al. 2003). All RNA samples and
chips used in this study passed established qual-
ity criteria (data not shown). We calculated the
intensities of probe sets using the gcrma pack-
age of Bioconductor software (R Development
Core Team 2005) with GC robust multichip
average (GCRMA) normalization (Wu et al.
2004). To identify differentially expressed
genes, we conducted two-group comparison
using Significance Analysis of Microarrays
(SAM) (Chu et al. 2003). We defined “dys-
regulated genes” as the differentially expressed
genes identified when a normal control group
was used in a pairwise comparison. Only the
probe sets that were present (determined by
Affy P-call) in all three replicates of at least one
group in the pairwise comparison were used for
data analysis. The gene-filtering parameters
and results are summarized in Supplemental
Material, Table 1 (http://www.ehponline.
org/members/2008/11229/suppl.pdf). For
probe sets representing the same Entrez
Gene [National Center for Biotechnology
Information (NCBI) 2008a] or UniGene acces-
sion numbers (NCBI 2008¢), we included only
the probe set with the lowest false detection rate
(FDR) or the highest fold changes in the gene
list. The microarray data have been submitted
to the NCBI’s Gene Expression Omnibus
(GEO) Datasets (NCBI 2008b) (GSE9465).

Identification of Gene Ontology (GO) cate-
gories enriched with dysregulated genes. The
functional profiles were represented by the bio-
logical processes in the GO database (Gene
Ontology Consortium 2006). We compared
the number of dysregulated genes in each
GO category with that of all genes in the
Affymetrix Mouse Genome 430 2.0 Array to
determine the significance of the GO category.
We performed the analysis using Onto-Express
(the Gene Ontology 2008), with the default
selection of statistic method (hypergeometric
distribution followed by false discovery rate
correction). We uploaded the lists of dys-
regulated genes into Onto-Express to identify
significant GO categories (the FDR-adjusted
p-value, g = 0.05 with six or more genes).

Ingenuity pathway analysis (IPA). We then
uploaded the dysregulated genes into Ingenuity
Pathways Analysis (IPA) software (Ingenuity
Systems Inc. 2008). This Web-delivered appli-
cation makes use of the Ingenuity Pathways
Knowledge Base (IPKB) containing a large
amount of individually modeled relationships
between gene objects (e.g., genes, mRNAs, and
proteins) in order to dynamically generate
significant regulatory and signaling networks or
pathways. The submitted genes that it maps to
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the corresponding gene objects in the IPKB are
called “focus genes.” The significance of a
canonical pathway is controlled by p-value,
which is calculated using the right-tailed (refer-
ring to the overrepresented pathway) Fisher
exact test for 2 x 2 contingency tables. This is
done by comparing the number of “focus”
genes that participate in a given pathway, rela-
tive to the total number of occurrences of those
genes in all pathways stored in the IPKB. The
significance threshold of a canonical pathway is
set to 1.3, which is derived by —log;( (p-value),
with p = 0.05.

Assessment of gene expression synergy
in PM- and OVA-challenged mice. We
employed a “synergy,” which we defined as
the presence of the effects by PM plus OVA
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that was greater than the effects induced by
PM or OVA alone and greater than the sum
of those individual effects (Gong et al. 2007).
We used a synergistic index,

SI = A(OVA + PM)/(APM + AOVA),

where A(OVA + PM) was the difference
between levels of PBS/PBS and OVA/PM
groups, APM was the difference in levels
between PBS/PM and PBS/PBS groups, and
AOVA was the difference in levels between
OVA/PBS and PBS/PBS groups. Synergy in
physiologic parameters required the concur-
rence of three criteria: SI > 1, A(OVA + PM)
> mean APM (p < 0.05), and A(OVA + PM)
> mean AOVA (p < 0.05).
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Figure 1. Effect of Baltimore PM on AHR (A) and BAL protein (B) in naive and OVA-sensitized mice. Values
shown are mean + SE (n=5-6). (A) AHR, assessed by response to intravenously administered ACh (1 mg/kg),
was increased on day 1 and remained elevated at least 7 days after PM exposure. PM stimulated significant
AHR in OVA-challenged mice compared with PBS/PBS control A/J mice. Airway responsiveness is
expressed as percentage of the time-integrated change in airway pressure over baseline pressure (APTI).
*Significant increase over PBS/PBS control for each time point (p < 0.05). *Significant change in response to PBS/OVA
group for each time point (p < 0.05). S, synergistic effect between PM and OVA treatment (SI > 1).
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Figure 2. Effect of Baltimore PM on total BAL leukocyte counts. (A) Total white blood cells (WBCs).
(B) Macrophages. (C) Neutrophils (polymorphonuclear cells; PMNs). (D) Eosinophils. Values shown are

mean + SE; n=5-6.

*Significant increase over PBS/PBS control for each time point (p < 0.05). *Significant increase over PBS/OVA group for
each time point (p < 0.05). S, synergistic effect between PM and OVA treatment (SI > 1).
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Nonmicroarray-related statistical analyses.
Data are presented as group means + SE. We
performed statistical comparisons among
treatment groups by randomized-design two-
way analysis of variance followed by the
Newman-Keuls post hoc test for more than
two groups, or by an unpaired Student’s #test
for two groups. In all cases, we defined statis-
tical significance as p < 0.05.

Results

PM-induced AHR in control and asthmatic
mice. To assess the contribution of ambient
Baltimore PM to murine airway inflammation
and asthmatic parameters, we used a well-
established murine asthma model and assessed
AHR as an indirect parameter of airway
bronchoconstriction in response to the endoge-
nous bronchoconstrictor ACh (Levitt and
Mitzner 1988). We measured airway pressure
changes stimulated by exogenously infused
ACh to represent airway responses expressed as
APTI, a widely used parameter to quantify
AHR (Ewart et al. 1995, 1996; Grinnan et al.
2006). We determined that OVA challenge
increased AHR in A/] mice on day 1 (1.9-fold
increase) and day 4 (1.7-fold increase). AHR
remained elevated on day 7 (1.8-fold increase),
but was not statistically significant (Figure 1A).
Similarly, PM exposure induced a prominent
(4.0-fold) increase in AHR in naive A/] mice
(PBS controls) on day 1, which waned over the
ensuing week, returning to control levels by
day 7. When we evaluated the effect of PM
exposure on AHR in OVA-challenged mice
with the established asthmatic phenotype, a
marked synergy in AHR was maximal on day 4
after PM exposure (4.9-fold increase)
(Figure 1A). By day 7, unlike either OVA or
PM treatment alone, PM-mediated AHR in
OVA-treated mice remained significantly ele-
vated compared with PBS-challenged naive A/J
mice (2.1-fold increase).

PM-induced alveolar protein leakage. We
assessed PM-mediated increases in BAL protein
level as an indication of epithelial/endothelial
barrier dysfunction and vascular leakage, as well
as a key parameter of inflammatory lung injury.
PM produced significant increases in the level
of BAL protein on days 1 and 4 (4.4- and
2.7-fold increase, respectively) in naive A/J
mice, with values declining to baseline levels at
day 7 after PM exposure (Figure 1B). As
expected, OVA challenge induced a mild
increase in BAL protein content on days 1
and 4 (1.3- and 1.7-fold increase, respectively).
Similar to PM effects in naive mice, PM
induced increases in BAL protein in OVA-chal-
lenged A/] mice on days 1 and 4 (> 2-fold
increase), with the increased BAL protein levels
returning to basal concentrations on day 7 after
PM challenge (Figure 1B).

PM-induced inflammatory leukocyte
infiltration into airways. PM has been
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reported to cause inflammatory leukocyte infil-
tration into airways and alveoli in various ani-
mal models (Dick et al. 2003; Kodavanti et al.
1999; Prahalad et al. 1999; Salvi et al. 2000;
Walters et al. 2001). We assessed the effect of
Baltimore PM on BAL leukocyte counts in
both naive and OVA-challenged asthmatic
mice (Figure 2A). PM induced a peak increase
in total leukocyte count in BAL fluid on day 1
(2.5-fold increase) and remained significantly
elevated on day 7. OVA reliably induced an
increase in leukocytes on day 1 (1.6-fold
increase), and this induction declined back to
control levels by day 7. The combination of
PM challenge in OVA mice, however, induced
strong synergy in leukocyte infiltration into air-
ways, which peaked on day 1 (Figure 2A) but
was still highly increased on day 4 and
remained elevated even on day 7.

We next analyzed the differential leukocyte
types in the extracted BAL. PM induced signif-
icant eosinophil (days 1 and 4) and neutrophil
(days 1, 4, and 7) infiltration into BAL with-
out any changes in BAL macrophage counts.
In contrast, OVA-sensitized mice exhibited
increased numbers of macrophages and
eosinophils at all three time points (Figure 2),
consistent with reported findings (Kung et al.
1994; Nakajima et al. 1992). Combined OVA
and Baltimore PM exposure was similar to
OVA exposure alone except for a marked
eosinophil infiltration into the airways on
day 4, which was greater than either exposure
alone (Figure 2).

PM-stimulated Ty1/Ty2 cytokine secretion.
We next examined the levels of Tyl cytokines
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(IL-6, IEN-y, TNF-a) and T2 cytokines
(IL-4, IL-5, eotaxin) in BAL fluid (Figure 3)
after PM and OVA challenge. Levels of IL-4
and IL-5 were not significantly altered by
direct PM exposure or OVA challenge. In
contrast, marked increases in IL-4 and IL-5
were produced by the combined challenge of
OVA and PM, results that were maximal at
day 1 after PM treatment (35- and 9-fold,
respectively) and remained significantly
elevated through day 4 (3.1- and 2.1-fold,
respectively). Levels of the eosinophil chemo-
attractant eotaxin are known to be increased
during eosinophil infiltration and T2 type
inflammation (Mattes and Foster 2003; Pease
and Williams 2001). Predictably, and consis-
tent with marked eosinophil recruitment,
OVA challenge increased eotaxin levels in
BAL (days 1 and 4). Despite only a modest
effect on BAL ecosinophil content, PM
increased eotaxin levels in the BAL of naive
mice and was markedly synergistic in OVA-
challenged asthmatic mice (days 1 and 4). The
effects of PM decreased to baseline on day 7
after PM challenge.

Several types of PM are known to stimulate
secretion of the proinflammatory cytokines IL-6
and TNF-a (Dick et al. 2003; Walters et al.
2001). We assayed Tyl cytokines (IFN-a,
IL-6, TNF-a) in BAL fluid and discovered a
strong PM-mediated Ty1-type inflammatory
profile with active induction of IL-6 and
TNF-o. (days 1 and 4) with a minimal effect on
IFN except on day 4 (Figure 3D-F). OVA chal-
lenge did not affect Tyl cytokine secretion at
any time point, and we identified no synergism
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between PM and OVA that elevated these Ty1
inflammatory cytokines.

PM-induced histologic alterations. We next
confirmed the inflammatory changes observed
in lung tissue sections subjected to H&E
staining after PM challenge in naive and OVA-
challenged mice (Figure 4). We observed
inflammartory leukocyte infiltration into vessels,
airways, and alveoli after OVA or PM treat-
ment on day 1 after treatment (Figure 4B-D).
PM also induced leukocyte infiltration in
OVA-challenged asthmatic mice. By day 7
(Figure 4E-H), the amount of infiltrated cells
declined in PM-treated mice (Figure 4F,H),
consistent with the BAL cellularity analysis
(Figure 2A) and cytokine profiles (Figure 3).
On day 1, we observed conjugated PM pellets
deposited in alveoli, reflecting PM exposure
(Figure 4B), but they were gradually eliminated
from the lung and became undetectable after
7 days (data not shown). PM also induced
mucus secretion into the airways (Figure 5).
PM, as well as OVA, activated mucus-produc-
ing goblet cells in murine airways day 4 post-
challenge. PM exhibited a stronger impact on
mucus activation in the OVA-remodeled air-
ways. Although leukocyte infiltration declined
7 days after PM exposure, elevated mucus secre-
tion persisted until day 7 (data not shown).

Differential lung gene expression by PM or
OVA challenge. We next used the Affymetrix
platform (Mouse Genome 430 2.0 Array) to
profile changes in gene expression after the
intratracheal installation of Baltimore PM in
naive and OVA-challenged mice. PM had a

strong impact on the global expression of lung
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Figure 3. Effect of Baltimore PM on Ty2 (A-C) and Ty1 (D—A cytokine levels in BAL fluid. (A-C) Levels of BAL Ty2 cytokines IL-4 (A), IL-5 (B), and eotaxin (C) and
(D-A levels of BAL Ty1 cytokines IFN-y (D), IL-6 (E), and TNF-o. (F). Values are mean + SE; n=4-5.
*Significant increase over PBS/PBS control for each time point (p < 0.05). *Significant increase over PBS/OVA group for each time point (p < 0.05). S, synergistic effect between PM and

OVA treatment (SI > 1).
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genes, with > 1,200 genes differentially
regulated by PM (p < 0.05) on day 4 after
exposure. With extremely stringent conditions
(FDR < 0.3% and fold change > 3-fold),
4306 genes survived filtering and were identified

as significantly dysregulated by PM exposure
(375 genes up-regulated and 61 genes down-
regulated). In contrast, OVA challenge had less
impact on lung gene expression than did PM
at day 4 after exposure. Only 37 genes

."1. 0" .

Figure 4. Effect of Baltimore PM on histologic alterations in the lung on days 1 (A-D) and 7 (E-H) after

treatment with Baltimore-PM. (A,E) PBS/PBS; (B,A) PBS/PM; (C,G) OVA/PBS; (D,H) OVA/PM. PM induced
inflammatory leukocyte infiltration in both control mice (A) and OVA-challenged mice (D). PM residues are
retained in alveoli. At 7 days, leukocyte infiltration declined to basal level (F, H). Tissues were stained with
H&E; each panel is representative of paraffin sections from three A/J mice with the same treatment.

Bars =50 pm; bars in insets = 300 pm.
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(21 genes up-regulated and 16 genes down-
regulated) were differentially regulated by
OVA sensitization even when less stringent cri-
teria (FDR < 5% and fold change > 2-fold)
were applied. The combination of PM and
OVA treatment exhibited synergistic effects on
lung gene expression, with a total of 591 genes
identified as differentially regulated [492 genes
up-regulated and 99 genes down-regulated
(FDR < 0.3% and fold change > 3-fold)].

The PM-regulated genes were related to
22 biological processes, including innate
immune response, chemotaxis, cell-surface
receptor-linked signal transduction, inflamma-
tory response, defense response, cell cycle,
nervous system development, and DNA-
dependent regulation of transcription
(Table 1). Of the 436 PM-regulated genes, we
defined 25 genes as the most differentially
regulated (fold change > 25-fold; Supplemental
Material Table 1 available online at http://
www.chponline.org/members/2008/11229/
suppl.pdf). Interestingly, 17 of these 25 genes
were closely linked with asthma/airway inflam-
mation, immune responses, chemokine/
cytokine, inflammation, and epithelial cell pro-
liferation (Supplemental Material, Table 2
available online at http://www.chponline.org/
members/2008/11229/suppl.pdf). These data
indicate that PM produces profound lung
inflammation in a manner that contributes to
asthma phenotypes, such as inflammatory
leukocytes maturation, cytokine secretion, and
airway remodeling.

IPA analyzes the pathways generated by dif-
ferentially expressed genes in a pairwise fashion
compared with either lung gene dysregulation
with PM or the combined PM and OVA chal-
lenge (Figure 6). Similar to GO analysis, cell
cycle, inflammatory response (interleukin sig-
naling, IFN signaling), and cell-surface receptor
(B-cell receptor, T-cell receptor, and Toll-like
receptor) pathways were among the most dis-
tinctly regulated pathways. Most of these sig-
naling pathways are closely related to asthma
development. For example, the genes in the
complement system were significantly regulated
by PM in both the control (PM group) and the
asthma animals (PM and OVA group). These
genes are implicated in the development of
asthmatic phenotypes (Wills-Karp 2007).

Regulation of asthmatic genes by PM. The
expression profiles of the most differentially
regulated asthma genes (by OVA) across all
samples were next displayed in dChip
(Figure 7). Most of the OVA-regulated genes
were consistent with previously reported data
(Izuhara and Saito 2006; Kuperman et al.
2005). Hierarchical clustering on individual
samples correctly classified replicates into the
corresponding experimental group, indicating
that the OVA-regulated genes displayed a dif-
ferential expression profile in each experimental
condition (PM, OVA, PM/OVA). We also
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divided samples into two further clusters: one
with only PBS control samples and the second
containing all OVA, PM, and OVA/PM
treated samples. We grouped expression levels
of genes into two primary clusters: a down-
regulated gene cluster and an up-regulated gene
cluster (Figure 7). In the cluster of down-
regulated genes, PM and OVA challenge and
the combined exposure exhibited the same
trend of gene down-regulation, whereas in the
up-regulated cluster of genes, most genes exhib-
ited an additive or synergistic pattern with both
PM and OVA exposures leading to an exacer-
bation of asthmatic gene expression by PM in
OVA-sensitized animals. Of all OVA regulated
genes, 14 of 37 genes were identified in the
SAM list of PM dysregulated genes, including
ItIna (intetlectin), a typical marker of airway
inflammation; 7f2 (trefoil factor 2), a marker
gene for airway mucus generation and asth-
matic phenotypes; and Clea3 (chloride channel
3), a well-recognized marker gene of mucus for-
mation, airway inflammation, and AHR
(Nakanishi et al. 2001; Nikolaidis et al. 2006)
(Table 2). Itlna (SI > 1.52), Tf2 (SI > 1.60),
and Clea3 (SI > 1.16) were all up-regulated by
PM and OVA synergistically.

Discussion

Epidemiologic studies have firmly linked
increased ambient PM exposure to increased
cardiopulmonary morbidity and mortality
(Samet and Krewski 2007), including exacer-
bation of preexisting conditions such as
asthma and COPD. Our present results, using
ambient PM from Baltimore, confirm and
extend previous studies that PM exposure
induces asthmalike parameters of AHR and
airway inflammation defined by increases in
BAL protein, eosinophils, and neutrophils.
Current concepts of asthma pathobiology
strongly suggest that these factors contribute
to asthma symptoms (Walters et al. 2001,
2002) and stimulate secretion of asthma-pro-
ducing T2 cytokines (IL-5 and eotaxin) into
BAL (Walters et al. 2001). To extend prior
findings beyond the biological effects of PM
in naive mice, we used an established OVA-
challenged murine asthma model (Archer
et al. 2004; Fernvik et al. 2002; Handzel
2000; Lambert et al. 1999; Walters et al.
2001) and assessed potential synergy between
PM exposure and the established asthmatic
phenotype at several time points after PM
exposure. In addition, we applied extensive
biochemical and genomic strategies to mecha-
nistically assess PM-mediated asthma pathobi-
ology. We now report the direct induction of
asthma-related parameters by PM and PM-
mediated exacerbation of preexisting murine
asthma parameters, in association with a defin-
able molecular signature composed of differ-
entially regulated genes relevant to asthma

Lung responses to ambient PM in a murine asthma model

Ambient particles are classified for health
purposes by acrodynamic diameter, as follows:
coarse [< 10 pm (PM)], fine (< 2.5 pm
(PM,5)], and ultrafine/nanoparticles [< 0.1 pm
(PMj)]. We used a single Baltimore PM sam-
ple with a median diameter of 1.78 pm, which
allows adequate upper and lower respiratory
tract deposition (Figure 4B,D) when delivered
via intratracheal instillation (Walters et al.

Figure 5. Effects of PM-induced mucus secretion in murine airways. Paraffin sections of the lung were

2001, 2002). This intratracheal administration
mode is not representative of physiologic condi-
tions and represents a high dose rate. This sin-
gle administered dose is equivalent to an
exposure over a period of months. We recog-
nize potential limitations with this approach.

A key finding in the present study is
the demonstration that PM not only induces
AHR in naive mice but also is synergistic in

stained with periodic acid-Schiff (PAS) to detect presence of goblet cells and activity at 4 days after
Baltimore PM treatment. (A) PBS/PBS; (B) PBS/PM; (C) OVA/PBS; (D) OVA/PM. Each panel is representa-
tive of paraffin sections from three A/J mice in the same treatment group. PM or OVA induced PAS-
positive purple staining. PM and OVA induced PAS-positive purple staining synergistically. Bars = 50 ym.

Table 1. Biological process enriched with dysregulated genes induced by OVA/PM.2

GOID Function name Gene g-Value
(0:0000074 Regulation of progression through cell cycle 13 3.22x 107
(0:0006260 DNA replication 12 3.84 x 107°
(50:0006355 Regulation of transcription, DNA-dependent 28 4.05x 1072
(0:0006468 Protein amino acid phosphorylation 22 431 %1072
(0:0006508 Proteolysis 26 6.59 x 107
(0:0006811 lon transport 21 1.94 %1072
(0:0006817 Phosphate transport 6 8.36 x 1073
(0:0006911 Phagocytosis, engulfment 6 163 % 1077
(0:0006935 Chemotaxis 18 1.13x 10710
(0:0006952 Defense response 12 3.60 x 107
(0:0006954 Inflammatory response 34 1.56 x 10710
(0:0006955 Immune response 57 2.11x 10710
(0:0006974 Response to DNA damage stimulus 10 2.37 x 1072
(0:0007049 Cell cycle 49 2.37 x 10710
(0:0007067 Mitosis 31 2.14x 10710
(G0:0007155 Cell adhesion 23 1.37x 1073
(0:0007165 Signal transduction 41 259 x 107
(0:0007166 Cell surface receptor linked signal transduction 9 8.33x 107
(0:0007242 Intracellular signaling cascade 17 2.56 x 1072
(0:0008283 Cell proliferation 7 3.13x 1072
(0:0045087 Innate immune response 10 2.04 x 108
(0:0051301 Cell division 40 2.16 x 10710

aG0 categories identified by Onto-Express software; only biological processes with more than five genes and g-values

pathogenesis. <0.05 are shown (see “Materials and Methods" for details).
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exacerbating AHR in mice with preexisting
enhanced AHR (OVA-sensitized mice 4 days
after PM exposure). Because diesel exhaust par-
ticles, a major source of Baltimore PM, are rec-
ognized as adjuvants during allergen exposure
(Nel et al. 1998; Ohta et al. 1999; Porter et al.
2007; Walters et al. 2001), the possibility that
ambient PM is generally involved in the
increased prevalence of human atopic asthma is

highly plausible. We did not directly address
the hypothesis that PM contributes to asthma
susceptibility; however, our data collected
from mice with established increased AHR
indicate that PM significantly increases the
severity and duration of several features
observed during acute asthma exacerbations
(Walters et al. 2001). The findings include
increased BAL eosinophils and BAL eotaxin
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Figure 6. Biological processes detected by IPA of 0VA/PM and PBS/PM dysregulated genes. Abbreviations:
NF-kB, nuclear factor-kB; PPAR, peroxisome proliferator-activated receptor. Several of the top significant
canonical pathways were enriched with dysregulated genes induced by PM or OVA/PM treatment. The
horizontal line indicates the threshold. See Supplemental Material, Table 2 (online at http://www.
ehponline.org/members/2008/11229/suppl.pdf) for the description of gene selections with SAM software.
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Figure 7. Hierarchical clustering of OVA-induced dysregulated genes by dChip. The 37 dysregulated genes
induced by OVA treatment were selected by SAM software (see Supplemental Material, Table 1, online at
http://www.ehponline.org/members/2008/11229/suppl.pdf). Sample clustering is displayed at the top; the two
gene clusters A and B are displayed on the left. Blue, white, and red represent the expression level below, at,
and above mean level, respectively. PBS1, PBS control sample 1; PM1, PM-treated sample 1; OVA1, OVA-
treated sample 1; OVAPM1, OVA- and PM-treated sample 1.
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and IL-5 generation, suggesting that PM
directly affects AHR independently of an effect
on allergic sensitization. In addition to
increased AHR, we observed that PM exposure
induces increases in BAL protein, reflecting
increases in vascular and epithelial permeability,
a cardinal feature of the inflammatory response
likely related to elevated levels of PM-contain-
ing reactive oxygen species (Gualtieri et al.
2007; Li et al. 2003) or to PM-mediated
recruitment of leukocytes to challenged airways.

Limited information exists concerning the
toxicogenomic effects of PM on lung tissue, a
viable strategy for the identification of poten-
tial molecular biomarkers that may reflect the
pulmonary toxicity of PM exposure (Andre
et al. 2006; Koike et al. 2004; Kooter et al.
2005; Leikauf et al. 2001; Roberts et al. 2004;
Wise et al. 2006). Because asthmalike parame-
ters peaked 3—7 days after PM treatment
(Walters et al. 2001), we chose day 4 after PM
exposure as the time point to assess the impact
of PM on lung tissue genome regulation, a
time point of maximal synergy with OVA sen-
sitization. The PM impact on global gene
expression was extremely strong, despite
extremely stringent conditions, with most of
the 436 filtered genes representing biological
processes closely associated with asthmatic
parameters, such as immune responses, innate
immune responses, inflammatory responses,
and leukocyte chemotaxis. Although ambient
particle-induced oxidative stress may con-
tribute to inflammatory and toxic effects (Li
and Nel 2006; MacNee and Donaldson 2003;
Xia et al. 2007), we did not identify this gene
ontology within the 436 genes in the SAM list.

Our genomic results (confirmed by
enzyme-linked immunosorbent assay and
reverse-transcriptase polymerase chain reaction
approaches) show the previously described
propensity for PM to induce a strong pro-
inflammatory molecular signature, as well as a
strong genomic signature involving activation
of biological pathways linked to the develop-
ment of asthmatic phenotypes, such as the
induction of the modulation and secretion of
key Ty2 cytokines (e.g., IL-4, IL-5, eotaxin).
Eosinophilic inflammation is a hallmark of
asthma, and exposure to Baltimore PM was a
potent stimulus for an influx of eosinophils (as
well as neutrophils) into the murine lung
(Figures 1B, 2, 4) and synergistically induced
eosinophil infiltration in asthmatic mice, likely
major contributors to the sustained AHR
response in PM-stimulated OVA-sensitized
mice. IL-4, a cytokine with marked PM-
mediated increases in gene and protein expres-
sion, regulates allergic inflammation by
eosinophil adhesion and recruitment to lung
airways, promotes T2 cell differentiation, and
direct stimulates airway remodeling (Kips
2001). Both IL-5, a primary cytokine involved
in eosinophil differentiation, maturation, and
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activation (Hogan et al. 1998), and eotaxin, an
eosinophil chemotaxin (Conroy and Williams
2001), exhibited markedly up-regulated expres-
sion by PM in asthmatic mice. These results
provide a viable mechanism for PM contribu-
tion to asthma development and propensity for
asthmatic exacerbations.

PM-mediated gene expression overlaps sig-
nificantly with many OVA-driven genes iden-
tified in our model of murine asthma with
expression in exactly the same direction (often
with significant synergy); that is, PM down-
regulates all OVA-down-regulated genes and
up-regulates all OVA—up-regulated genes
(Figure 7). OVA induces 37 differentially
expressed genes, with 14 of these genes also
listed within the PM-regulated SAM list
(Table 2) including the potent asthma bio-
markers Clca3 and Tff2 (Nikolaidis et al.
2006). Clca3 encodes a calcium-activated
chloride channel found to be critical in
mucus overproduction and AHR in asthma
(Nakanishi et al. 2001). The T2 cytokines
IL-4 and IL-13 induce Clca3 expression in
epithelium in association with goblet cell meta-
plasia, mucus overproduction, and augmented
allergic airway responses (Berlin et al. 2004).
Trefoil factor-2 (7/f2) is an allergen-induced
gene regulated by Ty2 cytokines in the lung
that promotes human bronchial epithelial cell
migration and formation of mucus-producing
airway cells (Nikolaidis et al. 2006). Consistent
with the dramatic up-regulation of genes that
encode factors that affect goblet cell activity
and mucus production, such as 7}2, Clea3,
and Muc5b, another marker for mucus stimu-
lation, PM exhibited prominent effects on
mucus stimulation as indicated by periodic
acid-Schiff (PAS) staining (Figure 5) in both
control and OVA-challenged mice.

Analysis of the gene ontologies stimulated
by PM in naive mice demonstrated similarities
to prior PM-related genomic studies with the
induction of airway inflammation activity. For
example, acute exposure (4-24 hr) of ultrafine
PM induced expression of genes involved in

Lung responses to ambient PM in a murine asthma model

oxidation stress, inflammation, transcription
regulation, and cardiovascular-related function
without a link to asthma development and
exacerbation (Andre et al. 2006; Kooter et al.
2005). IL-6 and TNF-a are proinflammatory
cytokines that regulate innate immunity physi-
ologic host defense processes during infection,
airway damage in COPD, and acute lung
injury (Chung 2001). Unlike results in OVA-
challenged mice alone, PM stimulates the gen-
eration and secretion of IL-6 and TNF-a into
airways (Figure 4) with marked neutrophil
infiltration. Another key PM signature in naive
mice is involvement of complement activation
pathways. Complement factors C3 and C5 are
potent chemoattractants for inflammatory cells
(neutrophils and eosinophils) and anaphyla-
toxins, which trigger smooth muscle contrac-
tion and regulate vasodilation (Bolger et al.
2007). C3 and CS5 are also known to increase
vascular permeability, a clear phenotypic para-
meter in PM-challenged OVA mice where PM
exposure induces significant changes in vascu-
lar permeability as assessed by protein content
in BAL fluids (Figure 2A). Complement
factor B is a key regulator in the development
of AHR and inflammation (Taube et al.
20006). In addition, we identified complement
factor 3 to mediate PM-induced AHR, indicat-
ing that AHR induced by PM depends on C3
activation in the airways (Walters et al. 2002).
Consistent with a role in mediating PM-regu-
lated airway function, we found five genes
from the complement system family that are
differentially affected by PM: complement
component 1, q subcomponent, alpha poly-
peptide (3.0-fold); complement component 1,
q subcomponent, beta polypeptide (3.2-fold);
complement component 1, q subcomponent,
C chain complement (3.5-fold); component 3a
receptor 1 (35-fold); and complement factor B
(17-fold).

Our genomic approaches also allowed us to
identify multiple, potentally novel, biomarkers
for development of asthmatic lung responses
induced by PM. Rgs9 is a family member of

Table 2. Intersection between PM- and OVA-induced dysregulated genes.

Probe set ID Symbol OVA PM GO category

1439423_x_at U46068 28 32 Lipid binding

1419684 _at Ccl8 26.2 26.7 Chemotaxis

1416306_at Clca3 3989.6 64.0 Chloride transport

1434046_at AA467197 46 68.6 Other

1459003_at Fhi1 0.3 0.2 Cell differentiation

1447918_x_at L0C207685 7.4 3.2 Humoral immune response

1418165_at Itina 197.5 35.3 Signal transduction

1439635_at Rgs9 0.2 0.2 G-protein coupled receptor protein signaling pathway
1449015_at Retnla 16.2 13.4 Hormone activity

1422040_at Sema7a 0.3 0.3 Multicellular organismal development

1456440_s_at St8siab 3.8 34 Protein amino acid glycosylation

1443361_at Tspan9 0.3 0.2 Other

1422448 _at T2 20.3 12.3 Other

1455114 _at Ung2 2.2 11.8 Regulation of progression through cell cycle DNA repair

Fold changes of dysregulated genes selected by SAM software (Supplemental Material Table 2, online at http://www.
ehponline.org/members/2008/11229/suppl.pdf). For all genes, g < 0.1%. Corresponding GenBank accession numbers are avail-
able from Affymetrix (https://www.affymetrix.com/analysis/netaffx/quickquery.affx?netaffx=netaffx4_annot) with probe ID.
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regulators of G-protein signaling that act as
GTPase-activating—proteins specific to the Ga
subunit. It plays a critical role in the termination
process of G-protein—mediated cell responses in
eukaryotes (Hepler 1999). Rgs9in retinal photo-
receptor cells induces an elevation in local cyclic
guanosine monophosphate (<GMP) concentra-
tion and closes cGMP-gated cation channels
(Arshavsky et al. 2002). PM reduced Rgs9 tran-
scription in lung tissues (6.2-fold), whereas
OVA had a similar effect (5.2-fold). Our find-
ing that Rgs9is highly transcribed in lung tissues
is novel, although a localized function has not
yet been elucidated. Intelectin is an intestinal
antimicrobial factor (Datta et al. 2005) induced
by IL-13 in human airway epithelial cells
(Kuperman et al. 2005). The molecular patterns
recognized by intelectin include furanosides
such as galactofuranose and galactofuranosyl
residues that are present in bacterial and fungal
cell walls and in protozoan parasites, but not in
mammalian cells. Intelectin was markedly
induced by PM (35-fold increase) and repre-
sents another potential signature of PM-induced
lung toxicity. Although intelectin in the airway
may setve as a novel defensive gene altering the
response of asthmatics to infection, the contri-
bution of intelectin to asthma pathogenesis
requires further exploration.

In summary, exposure of a murine preclin-
ical model of asthma to urban PM results in
elevation of AHR, BAL protein leakage,
inflammatory leukocyte infiltration, and
TH2/Ty1 cytokine secretion. Baltimore PM
also produced a strong molecular signature
composed of inflammatory/asthmatic gene
expression in naive mice, with marked synergy
with OVA-sensitized mice. These studies are
consistent with emerging epidemiologic evi-
dence and indicate that PM exposure evokes
proinflammatory and allergic molecular signa-
tures that may directly contribute to the
asthma susceptibility in naive subjects and
increased severity in affected asthmatics.
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